
Joo, K. et al. High performance package-level EMI shielding of Ag epoxy composites with spray method for high frequency FCBGA package application. In Proc. 2018 IEEE 20th Electronics Packaging Technology Conference (EPTC) 674–680 (IEEE, 2018).
Erickson, S. & Sakaguchi, M. Application of package-level high-performance EMI shield material with a novel nozzleless spray coating technology. In Proc. 2020 IEEE 70th Electronic Components and Technology Conference (ECTC) 1691–1696 (IEEE, 2020).
Zwenger, C. Enabling the 5G RF front-end module evolution with the DSMBGA package. Chip Scale Rev. 25, 26–33 (2021).
Zhang, X., Zhang, B. & Sun, R. Effective conformal EMI shielding coating for SiP modules with multi-shaped nano-Ag fillers. In Proc. 2022 23rd International Conference on Electronic Packaging Technology (ICEPT) 1–4 (IEEE, 2022).
Chung, D. D. L. Materials for electromagnetic interference shielding. J. Mater. Eng. Perform. 9, 350–354 (2000).
Peng, M. & Qin, F. Clarification of basic concepts for electromagnetic interference shielding effectiveness. J. Appl. Phys. 130, 225108 (2021).
Isari, A. A., Ghaffarkhah, A., Hashemi, S. A., Wuttke, S. & Arjmand, M. Structural design for EMI shielding: from underlying mechanisms to common pitfalls. Adv. Mater. 36, 2310683 (2024).
Ji, K., Zhao, H., Zhang, J., Chen, J. & Dai, Z. Fabrication and electromagnetic interference shielding performance of open-cell foam of a Cu–Ni alloy integrated with CNTs. Appl. Surf. Sci. 311, 351–356 (2014).
Lee, S. H. et al. Density-tunable lightweight polymer composites with dual-functional ability of efficient EMI shielding and heat dissipation. Nanoscale 9, 13432–13440 (2017).
Wu, S. et al. Robust and stable Cu nanowire@graphene core–shell aerogels for ultraeffective electromagnetic interference shielding. Small 14, 1800634 (2018).
Zeng, Z. et al. Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 32, 1908496 (2020).
Choi, H. K. et al. Hierarchical porous film with layer-by-layer assembly of 2D copper nanosheets for ultimate electromagnetic interference shielding. ACS Nano 15, 829–839 (2021).
Liu, J. et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29, 1702367 (2017).
Zhou, Z. et al. Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding. Adv. Mater. Interfaces 6, 1802040 (2019).
Han, M. et al. Anisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption. Adv. Opt. Mater. 7, 1900267 (2019).
Iqbal, A. et al. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369, 446–450 (2020).
Cheng, Y. et al. Hierarchically porous polyimide/Ti3C2Tx film with stable electromagnetic interference shielding after resisting harsh conditions. Sci. Adv. 7, eabj1663 (2021).
Zhang, Y. et al. Strong and conductive reduced graphene oxide-MXene porous films for efficient electromagnetic interference shielding. Nano Res. 15, 4916–4924 (2022).
Zhang, Y., Ruan, K., Zhou, K. & Gu, J. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, 2211642 (2023).
Jiang, Y. et al. Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat. Biotechnol. 41, 652–662 (2023).
Yoo, J.-Y. et al. Wireless broadband acousto-mechanical sensing system for continuous physiological monitoring. Nat. Med. 29, 3137–3148 (2023).
Sakuma, K. et al. CMOS-compatible wearable sensors fabricated using controlled spalling. IEEE Sens. J. 19, 7868–7874 (2019).
Gebrael, T. et al. High-efficiency cooling via the monolithic integration of copper on electronic devices. Nat. Electron. 5, 394–402 (2022).
Salvatore, G. A. et al. Wafer-scale design of lightweight and transparent electronics that wraps around hairs. Nat. Commun. 5, 2982 (2014).
Das Sharma, D. & Mahajan, R. V. Advanced packaging of chiplets for future computing needs. Nat. Electron. 7, 425–427 (2024).
Schmitz, J. Low temperature thin films for next-generation microelectronics (invited). Surf. Coat. Technol. 343, 83–88 (2018).
Yun, T. et al. Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 32, 1906769 (2020).
Simon, R. M. EMI shielding through conductive plastics. Polym. Plast. Technol. Eng. 17, 1–10 (1981).
Das, N. C. et al. Single-walled carbon nanotube/poly(methyl methacrylate) composites for electromagnetic interference shielding. Polym. Eng. Sci. 49, 1627–1634 (2009).
Han, M. et al. Beyond Ti3C2Tx: MXenes for Electromagnetic Interference Shielding. ACS Nano 14, 5008–5016 (2020).
Xing, Y. et al. Multilayer ultrathin MXene@AgNW@MoS2 composite film for high-efficiency electromagnetic shielding. ACS Appl. Mater. Interfaces 15, 5787–5797 (2023).
Iqbal, A., Sambyal, P. & Koo, C. M. 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30, 2000883 (2020).
Song, W.-L. et al. Facile fabrication of ultrathin graphene papers for effective electromagnetic shielding. J Mater Chem C Mater 2, 5057–5064 (2014).
Song, P. et al. Frequency-adjustable electromagnetic interference shielding performance of sandwich-structured conductive polymer composites by selective foaming and tunable filler dispersion. Compos. Commun. 34, 101264 (2022).
Calister, W. D. Jr & Rethwisch, D. G. Materials Science and Engineering: An Introduction, 10th edn (Wiley, 2018).
Liu, J. & Nicolosi, V. Electrically insulating electromagnetic interference shielding materials: a perspective. Adv. Funct. Mater. 35, 2407439 (2025).
Shahzad, F. et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016).
Fei, Y. et al. Recent progress in TiO2-based microwave absorption materials. Nanoscale 15, 12193–12211 (2023).
Wang, J. et al. Heterojunction engineering and ideal factor optimization toward efficient MINP perovskite solar cells. Adv. Energy Mater. 11, 2102724 (2021).
Hong, J. et al. Electromagnetic shielding of optically-transparent and electrically-insulating ionic solutions. Chem. Eng. J. 438, 135564 (2022).
Liu, J., Yu, M.-Y., Yu, Z.-Z. & Nicolosi, V. Design and advanced manufacturing of electromagnetic interference shielding materials. Mater. Today 66, 245–272 (2023).
Yeon, H.-W. et al. Cu diffusion-driven dynamic modulation of the electrical properties of amorphous oxide semiconductors. Adv. Funct. Mater. 27, 1700336 (2017).
Kaloyeros, A. E. & Eisenbraun, E. Ultrathin diffusion barriers/liners for gigascale copper metallization. Annu. Rev. Mater. Sci. 30, 363–385 (2000).
Zaed, M. A. et al. Cost analysis of MXene for low-cost production, and pinpointing of its economic footprint. Open Ceram. 17, 100526 (2024).
Alhabeb, M. et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017).
Guisbiers, G. & José-Yacaman, M. in Enclyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry (ed. Wandelt, K.) 875–885 (Elsevier, 2018).
Tokuda, K., Ogino, T., Kotera, M. & Nishino, T. Simple method for lowering poly(methyl methacrylate) surface energy with fluorination. Polym. J. 47, 66–70 (2015).
Yeon, H. et al. Long-term reliable physical health monitoring by sweat pore–inspired perforated electronic skins. Sci. Adv. 7, eabg8459 (2021).
Davuluri, P. & Chen, C. Radio frequency interference due to USB3 connector radiation. In Proc. 2013 IEEE International Symposium on Electromagnetic Compatibility 632–635 (IEEE, 2013).



